Bitcoin News

Cambridge Bitcoin Electricity Consumption Index updated to reflect hardware distribution and hashrate increases

Cambridge Bitcoin Electricity Consumption Index updated to reflect hardware distribution and hashrate increases

Researchers behind the well-known Cambridge Bitcoin Electricity Consumption Index (CBECI) have officially revised its methodology to enhance the accuracy and reliability of the Index’s estimates for the first time since its inception in 2019.

The CBECI was launched in July 2019 in an effort to provide reliable data-driven insights to questions about Bitcoin mining’s energy-intensive nature and associated environmental impact. 

Speaking exclusively to Cointelegraph ahead of announcement of the revision, head researcher Alexander Neumueller unpacked the Index’s role in providing a relatively accurate estimate of the Bitcoin (BTC) network’s electricity consumption and contextualizing the data in a way that is digestible for the layman on the street.

Key takeaways from the revised methodology included a focus on recent developments in Bitcoin mining hardware and hash rate and whether the CBECI was accurately reflecting the changing landscape. The researchers honed in on questions around what had driven substantial increases in hash rate in recent years as newer mining equipment eclipsed older models in computing power.

Related: Nuclear and gas fastest growing energy sources for Bitcoin mining: Data

Neumueller and his fellow researchers noted that the scarcity of hardware-related data posed a significant challenge as it limited the CBECI’s ability to accurately assess the types of hardware that miners use as well as their ubiquity.

This led the researchers to previously create a methodology that simulates a daily hardware distribution based on performance and power usage data of real hardware. Neumeuller notes that the backbone of the previous CBECI methodology assumed that every profitable hardware model released less than five years ago equally fuelled the total network hashrate.

This in turn led to a “disproportionally large number” of older mining hardware compared to newer models in the methodology’s assumed hardware distribution during exceptionally profitable mining periods.

Related: Iris Energy buys 248 Nvidia GPUs worth $10M for generative AI and Bitcoin mining

The researchers subsequently discovered that more recently released equipment appeared to be underrepresented while equipment nearing the end of its life cycle was overrepresented. This prompted the change in the CBECI methodology.

Neumeller then explained how his team began comparing hashrate increases with United States import data reflecting recent Bitcoin mining hardware…

Click Here to Read the Full Original Article at News…